F_{ST} and kinship for arbitrary population structures

Alejandro Ochoa

John D. Storey Lab

Center for Statistics and Machine Learning, and Lewis-Sigler Institute for Integrative Genomics, Princeton University

Why study F_{ST} and kinship?

Human genetics is fascinating!

Pop. structure confounds association studies (GWAS)

Heritability of complex traits

Animal and plant breeding

F_{ST} measures population structure and differentiation

Median differentiation SNP (rs11692531) $\hat{F}_{\text{ST}} \approx 0.081$ using Weir-Cockerham estimator Human Genome Diversity Project (HGDP)

 F_{ST} in the independent subpopulation model

Illustration.

$$F_{\mathsf{ST}} = rac{\mathsf{Var}\left(p_i^{\mathcal{S}} \middle| T\right)}{p_i^{T}\left(1 - p_i^{T}\right)}.$$

 $F_{\rm ST}$ estimation is constrained to independent subpopulations

Our contribution

Previous F_{ST} definitions/estimators assume independent subpopulations.

- 1. We generalize F_{ST} for arbitrary populations, in terms of individuals.
- 2. We characterize the **bias** of popular **estimators** under arbitrary population structure, through theory and simulations.
- 3. We develop a **new estimator** of kinship and F_{ST} for arbitrary population structures.

Confusion: three versions of F_{ST}

Definition 1: F_{ST} as a measure of **relatedness** in a population

$$F_{ST} = \bar{f}_S^T = \theta^T$$
 or $\bar{\theta}^T$.

Initially estimated from pedigrees.

Definition 2: F_{ST} as a parameter controlling allelic variance

$$F_{\mathsf{ST}} = rac{\mathsf{Var}\left(p_i^{\mathsf{S}} \middle| T\right)}{p_i^{\mathsf{T}}\left(1 - p_i^{\mathsf{T}}\right)}.$$

Def. 1 \Rightarrow Def. 2 with F_{ST}

- ► Shared across loci *i*.
- ▶ No μ or selection.

Definition 3: F_{ST} as a **statistic** of locus-specific variance

$$F_{\mathsf{ST},i} = rac{\hat{\sigma}_i^2}{ar{p}_i(1-ar{p}_i)}.$$

Goals:

- ▶ Varies per locus *i*.
- Measures μ and selection.

Our generalized definition corresponds most closely to **Definition 1**.

Wright's F_{ST} in cattle

Populations: *T*: Shorthorn

S: Dutchess

strain

Wright (1951)

1900

Populations related by a tree

 F_{ST} in a subdivided population: Wright (1951)

Admixed populations have complex structures

US individuals are often admixed from populations across the world.

- ► European: UK, Ireland, Germany, Italy
- ► African: West Africa
- ▶ Hispanic: Puerto Rico, Mexico
- Asian: China, India

African-Americans and Hispanics are recently admixed (5-15 generations ago) from differentiated populations.

Admixture proportions vary (admix. LD) \Rightarrow complex kinship.

GWAS and heritability estimation in multiethnic or admixed data?

Recently admixed populations

Hispanics MEX NativeAm European 0.04 African DOM PUR 0.00 □ HAI -0.02 -0.04 -0.06 -0.05 0.00 0.05 PC1

Moreno-Estrada, et al. (2013)

Admixed siblings from different populations?

Lucy and Maria, UK

Ochoa brothers, MX

Moreno-Estrada, et al. (2013)

Solution: treat every individual as its own population!

SNP data

Example: Genotype CC CT TT x_{ii} 0 1 2

An unstructured population

Individuals mate randomly.

In a large population T, genotypes

$$x_{ij} \sim \text{Binomial}(2, p_i^T),$$

at SNP i with reference allele frequency p_i^T , for any individual j.

This is "Hardy-Weinberg Equilibrium".

Inbreeding coefficient f_i^T

 f_j^T : Probability that the two alleles of individual j at a random SNP are "identical by descent" (IBD) **given** an ancestral population T.

A structured population has $f_i^T > 0$.

Kinship coefficients φ_{ik}^T

 φ_{jk}^T : Probability that one allele of individual j and one of individual k, at a random SNP, are IBD, **given** an ancestral population T.

Local kinship, given unrelated founders

j, k relation	$arphi_{jk}^{T}$
self	1/2
child	1/4
sibling	1/4
half sibling	1/8
uncle or nephew	1/8
first cousins	1/16
second cousins	1/64
unrelated	0

Kinship model for genotypes

Let T be the ancestral population. In the absence of selection or mutation, allele frequencies drift randomly from the ancestral frequency p_i^T , with covariances modulated by the kinship coefficients:

$$\begin{aligned} \mathsf{E}[x_{ij}|T] &= 2\rho_i^T, \\ \mathsf{Var}(x_{ij}|T) &= 2\rho_i^T \left(1 - \rho_i^T\right) \left(1 + f_j^T\right), \\ \mathsf{Cov}(x_{ij}, x_{ik}|T) &= 4\rho_i^T \left(1 - \rho_i^T\right) \varphi_{jk}^T. \end{aligned}$$

Note that $\varphi_{jj}^T = \frac{1}{2} \left(1 + f_j^T \right)$.

(Wright 1921, Malécot 1948, Wright 1951, Jacquard 1970).

Individual-level analogs of F_{IT} , F_{IS} , F_{ST}

"Total" coef., analogous to F_{IT} : f_j^T and φ_{jk}^T are relative to T.

"Local" coef., analogous to F_{IS} : $f_i^{L_j}$ is relative to L_j ,

 $\varphi_{jk}^{L_{jk}}$ is relative to L_{jk} .

"Structural" coef., analogous to F_{ST} :

$$egin{aligned} \mathbf{f_{L_j}^T} &= rac{f_j^T - f_j^{L_j}}{1 - f_j^{L_j}}, \ \mathbf{f_{L_{jk}}^T} &= rac{arphi_{jk}^T - arphi_{jk}^{L_{jk}}}{1 - arphi_{jk}^{L_{jk}}}. \end{aligned}$$

$F_{\rm ST}$ for arbitrary population structures

We propose

$$F_{\mathsf{ST}} = \sum_{j=1}^{n} w_j f_{L_j}^{\mathsf{T}},$$

where

- $f_{L_i}^T$ = inbreeding coefficient of L_j relative to T
- $w_j \ge 0, \sum_{j=1}^n w_j = 1$ are weights

Backward compatible with $F_{\rm ST}$ for subpopulations. Coherent with Wright's 1951 definition.

Coancestry model and individual allele frequencies

This restricted model assumes the existence of *individual-specific allele* frequencies π_{ij} , modulated by coancestry coefficients θ_{ik}^T :

$$\mathsf{E}[\pi_{ij}|T] = p_i^T, \ \mathsf{Cov}(\pi_{ij}, \pi_{ik}|T) = p_i^T \left(1 - p_i^T\right) \theta_{jk}^T, \ x_{ij}|\pi_{ij} \sim \mathsf{Binomial}(2, \pi_{ij}).$$

This model excludes local relationships. Given these assumptions, **coancestry** and **kinship** coefficients are the same:

$$\theta_{jk}^{T} = \begin{cases} \varphi_{jk}^{T} & \text{if } j \neq k, \\ f_{j}^{T} = 2\varphi_{jj}^{T} - 1 & \text{if } j = k. \end{cases} \qquad F_{ST} = \sum_{j=1}^{n} w_{j} \theta_{jj}^{T}$$

F_{ST} estimation under independent subpopulations

Weir-Cockerham and Hudson F_{ST} estimators with π_{ii} simplify to

Under independent subpopulations, F_{ST} can be solved for:

$$\hat{\rho}_{i}^{T} = \frac{1}{n} \sum_{j=1}^{n} \pi_{ij},$$

$$\hat{\sigma}_{i}^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(\pi_{ij} - \hat{\rho}_{i}^{T} \right)^{2},$$

$$\hat{F}_{ST}^{indep} = \frac{\sum_{i=1}^{m} \hat{\sigma}_{i}^{2}}{\sum_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T} \right) + \frac{1}{n} \hat{\sigma}_{i}^{2}}$$

$$\xrightarrow[m \to \infty]{\text{a.s.}} F_{ST}.$$

$$\hat{\rho}_{i}^{T} = \frac{1}{n} \sum_{j=1}^{n} \pi_{ij}, \qquad \qquad \mathsf{E}\left[\frac{1}{m} \sum_{i=1}^{m} \hat{\sigma}_{i}^{2}\right] = \overline{p(1-p)}^{T} F_{\mathsf{ST}},$$

$$\hat{\sigma}_{i}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\pi_{ij} - \hat{\rho}_{i}^{T}\right)^{2}, \qquad \mathsf{E}\left[\frac{1}{m} \sum_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T}\right)\right] = \overline{p(1-p)}^{T} \left(1 - \frac{F_{\mathsf{ST}}}{n}\right)$$

F_{ST} estimation under arbitrary coancestry

Weir-Cockerham and Hudson F_{ST} estimators with π_{ii} simplify to

Under the general coancestry model. system is underdetermined:

$$\hat{
ho}_i^{\, au} = rac{1}{n} \sum_{i=1}^n \pi_{ij},$$

$$\begin{bmatrix} m \geq 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{m} & \hat{\mathbf{n}}^T \\ \hat{\mathbf{n}}^T \end{bmatrix} \begin{bmatrix} 1 - i \end{bmatrix}$$

E
$$\left[\frac{1}{m}\sum_{i=1}^{m}\hat{\sigma}_{i}^{2}\right] = \overline{p(1-p)}^{T}\frac{n(F_{\mathsf{ST}}-\bar{\theta}^{T})}{n-1},$$

$$\hat{\sigma}_i^2 = rac{1}{n-1} \sum_{i=1}^n \left(\pi_{ij} - \hat{oldsymbol{
ho}}_i^T
ight)^2, \qquad \mathsf{E}\left[rac{1}{m} \sum_{i=1}^m \hat{oldsymbol{
ho}}_i^T \left(1 - \hat{oldsymbol{
ho}}_i^T
ight)
ight] = \overline{p(1-p)}^T (1-ar{ heta}^T).$$

$$\sum_{i=1}^{m} \hat{\sigma}_{i}^{2}$$

$$\xrightarrow[m\to\infty]{\text{a.s.}} \frac{n\left(F_{\mathsf{ST}} - \bar{\theta}^{T}\right)}{n-1 + F_{\mathsf{ST}} - n\bar{\theta}^{T}}$$

 $\hat{F}_{\mathsf{ST}}^{\mathsf{indep}} = \frac{\sum\limits_{i=1}^{m} \hat{\sigma}_{i}^{2}}{\sum\limits_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T}\right) + \frac{1}{n} \hat{\sigma}_{i}^{2}} \qquad \begin{array}{l} \bar{\theta}^{T} \colon \mathsf{mean\ coancestry.} \\ \mathsf{In\ independent\ subpopulations} \\ \bar{\theta}^{T} = \frac{1}{2} F_{\mathsf{CT}} \end{array}$ $\bar{\theta}^T = \frac{1}{2} F_{ST}$.

Admixture models

Draw alleles from a mixture of populations:

$$\pi_{ij} = \sum_{u=1}^K p_i^{\mathcal{S}_u} q_{ju},$$

where q_{ju} is ancestry proportion, $p_i^{S_u}$ is AF in subpopulation S_u . If subpopulations are independent and $f_{S_u}^T$ is F_{ST} of S_u relative to T, then

$$\theta_{jk}^{T} = \sum_{u=1}^{K} q_{ju} q_{ku} f_{S_{u}}^{T}, \qquad F_{ST} = \sum_{j=1}^{n} \sum_{u=1}^{K} w_{j} q_{ju}^{2} f_{S_{u}}^{T}.$$

Our admixture simulation

Comparison of population structures in simulation

Bias estimating the generalized F_{ST}

The popular Weir-Cockerham (WC) and Hudson F_{ST} estimators, formulated for independent subpopulations, are biased in our admixture simulation:

Bias estimating kinship coefficients

The popular kinship estimator from genotypes and its limit are

$$\hat{\varphi}_{jk}^{T} = \frac{\sum\limits_{i=1}^{m}\left(\mathsf{x}_{ij}-2\hat{\rho}_{i}^{T}\right)\left(\mathsf{x}_{ik}-2\hat{\rho}_{i}^{T}\right)}{4\sum\limits_{i=1}^{m}\hat{\rho}_{i}^{T}\left(1-\hat{\rho}_{i}^{T}\right)} \xrightarrow[m \to \infty]{\mathsf{a.s.}} \frac{\varphi_{jk}^{T}-\bar{\varphi}_{j}^{T}-\bar{\varphi}_{k}^{T}+\bar{\varphi}^{T}}{1-\bar{\varphi}^{T}},$$

where $\bar{\varphi}_i^T$ and $\bar{\varphi}^T$ are weighted mean kinships. In our admixture simulation:

A new kinship estimator

Bias in new kinship estimator is parametrized by $\bar{\varphi}^T$:

$$\hat{arphi}_{jk}^{T,\mathsf{Old}} = rac{\sum\limits_{i=1}^{m} \left(x_{ij} - 2\hat{
ho}_{i}^{T}
ight) \left(x_{ik} - 2\hat{
ho}_{i}^{T}
ight)}{4\sum\limits_{i=1}^{m} \hat{
ho}_{i}^{T} \left(1 - \hat{
ho}_{i}^{T}
ight)} \stackrel{\mathsf{a.s.}}{\longrightarrow} rac{\mathcal{F}_{jk}^{T} - \bar{\mathcal{F}}_{j}^{T} - \bar{\mathcal{F}}_{k}^{T} + \bar{\mathcal{F}}^{T}}{1 - \bar{\mathcal{F}}^{T}},
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = rac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ik} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{
ho}_{i}^{T} \left(1 - \hat{
ho}_{i}^{T}
ight)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} rac{\mathcal{F}_{jk}^{T} - \bar{\mathcal{F}}^{T}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ik} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{
ho}_{i}^{T} \left(1 - \hat{
ho}_{i}^{T}
ight)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} rac{\mathcal{F}_{jk}^{T} - \bar{\mathcal{F}}^{T}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ik} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{
ho}_{i}^{T} \left(1 - \hat{
ho}_{i}^{T}
ight)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} rac{\mathcal{F}_{jk}^{T} - \bar{\mathcal{F}}^{T}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ik} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T}\right)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ij} - 1)(x_{ij} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T}\right)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ij} - 1)(x_{ij} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{\rho}_{i}^{T} \left(1 - \hat{\rho}_{i}^{T}\right)} + 1 \stackrel{\mathsf{a.s.}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T}}.
onumber \ \hat{\mathcal{F}}_{jk}^{T,\mathsf{New}} = \frac{\sum\limits_{i=1}^{m} (x_{ij} - 1)(x_{ij} - 1)(x_{ij} - 1) - 1}{4\sum\limits_{i=1}^{m} \hat{\rho}_{i}^{T,\mathsf{New}}} + 1 \stackrel{\mathsf{A.\mathsf{A}}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} = \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} + 1 \stackrel{\mathsf{A.\mathsf{A}}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} = \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} = \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} = \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} + 1 \stackrel{\mathsf{A}}{\longrightarrow} \frac{\mathcal{F}_{jk}^{T,\mathsf{New}}}{1 - \bar{\mathcal{F}}^{T,\mathsf{New}}} = \frac{\mathcal{F}_{jk}^{T,$$

Remaining bias in $\hat{\varphi}_{jk}^{T,\text{New}}$ comes from estimating $p_i^T \left(1 - p_i^T\right)$ with $\hat{p}_i^T \left(1 - \hat{p}_i^T\right)$.

A new kinship estimator

Limit of proposed estimate:

$$\hat{arphi}_{jk}^{T,\mathsf{New}} = rac{\sum\limits_{i=1}^{m} (x_{ij}-1)(x_{ik}-1)-1}{4\sum\limits_{i=1}^{m} \hat{
ho}_{i}^{T} \left(1-\hat{
ho}_{i}^{T}
ight)} + 1 \quad \stackrel{\mathsf{a.s.}}{\longrightarrow} \quad rac{arphi_{jk}^{T}-ar{arphi}^{T}}{1-ar{arphi}^{T}},$$

If $\min_{j,k} \varphi_{jk}^T = 0$, then

$$\min_{i,k} \hat{\varphi}_{jk}^{T,\mathsf{New}} \xrightarrow[m \to \infty]{\mathsf{a.s.}} \frac{-\bar{\varphi}^T}{1 - \bar{\varphi}^T}$$

Performance of proposed estimator

Population-level and Individual-level distances in 1000 Genomes

Revised F_{ST} estimates in 1000 Genomes

We have...

...generalized F_{ST} using parameters for arbitrary structure in terms of individuals.

...connected F_{ST} , kinship coefficients, and admixture models.

...characterized bias of common estimators when assumptions are broken.

...used an admixture simulation to illustrate biases.

...developed new estimators of F_{ST} and kinship/coancestry.

Other work from Dr. Ochoa

Modeling the placebo response in psychiatric drug trials
Collaboration with Otsuka Pharma.

Protein sequence analysis Improving sequence homology stats

Future work: Selection tests

 x_i : genotype vector at SNP i,

 $\hat{\Phi}^T$: kinship matrix estimate,

 \hat{p}_i^T : ancestral allele frequency estimate,

Then this generalized *z*-score measures deviation of this SNP from the neutral genetic structure:

$$z_i^2 = \frac{\left(\mathbf{x}_i - 2\hat{\rho}_i^T \mathbf{1}\right)^{\mathsf{T}} \left(\hat{\Phi}^T\right)^{-1} \left(\mathbf{x}_i - 2\hat{\rho}_i^T \mathbf{1}\right)}{4\hat{\rho}_i^T \left(1 - \hat{\rho}_i^T\right)}.$$

Complements other info such as selective sweeps.

Future work: Admixture LD

Moreno-Estrada, et al. (2013)

Simple extension:

The kinship matrix varies per locus depending on population assignments.

More general local kinship estimation?

Future work: Kinship in Recent Mutations

Recall the following only holds for neutral SNPs polymorphic in T:

$$\mathsf{E}[x_{ij}|T] = 2p_i^T,$$

$$\mathsf{Cov}(x_{ij}, x_{ik}|T) = 4p_i^T (1 - p_i^T) \varphi_{ik}^T.$$

A SNP that arose from recent mutation in S instead has $p_i^T = 0$ or 1 and:

$$\mathsf{E}[x_{ij}|S] = 2p_i^{\mathcal{S}}, \ \mathsf{Cov}(x_{ij}, x_{ik}|S) = 4p_i^{\mathcal{S}} \left(1 - p_i^{\mathcal{S}}\right) \varphi_{jk}^{\mathcal{S}}.$$

Also recall:

$$(1 - \varphi_{ik}^{\mathsf{T}}) = (1 - \varphi_{ik}^{\mathsf{S}}) (1 - f_{\mathsf{S}}^{\mathsf{T}}).$$

Recent mutations require special treatment in GWAS/herit. studies!

Acknowledgments

John D. Storey

Andrew Bass Irineo Cabreros Chee Chen

Wei Hao

Emily Nelson

Riley Skeen-Gaar

Neo Christopher Chung Institute of Informatics University of Warsaw

Funding: National Institutes of Health Otsuka Pharmaceuticals

Lewis-Sigler Institute for Integrative Genomics

Future work: Variable kinship in GWAS

Suppose the kinship matrix $\Phi_i^T = (\varphi_{iik}^T)$ varies per locus *i*:

$$\mathsf{Cov}\left(x_{ij}, x_{ik} \middle| T\right) = 4p_i^T \left(1 - p_i^T\right) \varphi_{iik}^T.$$

This Φ_i^T replaces the global kinship Φ^T used in LMM and adjusted χ^2 GWAS, varying given local admixture or the recent mutation model.

Future work: Variable kinship in heritability estimation

Suppose the kinship matrix $\Phi_i^T = (\varphi_{iik}^T)$ varies per locus *i*:

$$\mathsf{Cov}\left(x_{ij}, x_{ik} | \mathcal{T}\right) = 4p_i^{\mathcal{T}} \left(1 - p_i^{\mathcal{T}}\right) \varphi_{ijk}^{\mathcal{T}}.$$

Let $y = (y_i)$ be a trait controlled by additive genetic effects as

$$y_j = \mu + \sum_{i \in C} \beta_i x_{ij} + \epsilon_j,$$

The trait's covariance structure is now given by the mean kinship at causal loci *C*:

$$\mathsf{Cov}(\mathbf{y}|T) = \sigma^2 \left(h^2 2 \bar{\Phi}^T + (1 - h^2) \mathbf{I} \right), \quad \text{where}$$

$$\bar{\Phi}^T = \sum_{i=0}^T w_i \Phi_i^T, \quad w_i \propto \beta_i^2 p_i^T (1 - p_i^T).$$