Fst and kinship for arbitrary population structures

Alejandro Ochoa
John D. Storey Lab
Center for Statistics and Machine Learning, and

Lewis-Sigler Institute for Integrative Genomics,
Princeton University

2017-02-13



Why study Fst and kinship?

Pop. structure
Human genetics .*. - % . confounds
is fascinating! T association
creilmees studies (GWAS)

Animal and plant
breeding

Heritability of
complex traits




Fst measures population structure and differentiation
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Median differentiation SNP (rs11692531)
Fst ~ 0.081 using Weir-Cockerham estimator
Human Genome Diversity Project (HGDP)
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Fst in the independent subpopulation model
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FsT estimation is constrained to independent subpopulations

Indep. Subpops Admixture
}/ /\\ \ /
vv_ PRI Ny \‘A\"’ NA
A A o A,
n
N
o
%)
T 22
S o
g [] 2
S =
5 8 X
o
l. o




Our contribution

Previous Fst definitions/estimators assume independent subpopulations.

1. We generalize Fst for arbitrary populations, in terms of individuals.

2. We characterize the bias of popular estimators under arbitrary population
structure, through theory and simulations.

3. We develop a new estimator of kinship and Fst for arbitrary population
structures.



Confusion: three versions of Fst

Definition 1: Fst as a Definition 2: Fst as a
measure of relatedness in a parameter controlling
population allelic variance
= = s
Fst=f =07 o 0. g Var(pP|T)

T pl (1-p])

Initially estimated from I
pedigrees. Def. 1 = Def. 2 with Fst
» Shared across loci i.

» No p or selection.

Definition 3: FsT as a
statistic of locus-specific
variance
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FST,i e E——
pi(1— p;)
Goals:

» Varies per locus /.

» Measures 1 and
selection.

Our generalized definition corresponds most closely to Definition 1.



Wright's Fst in cattle

o [o) o Favourite

e

. Youn,
Foljambe strawberry

i

Bolingbroke Phoenix

\

Populations: me\
T: Shorthorn Young
S: Dutchess Aszffff,J@“”‘
strain Comet

Bates's Duchess strain

-020

1850 1900 1920

Wright (1951)



Populations related by a tree

kinship or
coancestry



Fst in a subdivided population: Wright (1951)

(1-FA7)=(1—Fs)(1— FsT)



Admixed populations have complex structures

US individuals are often admixed from populations across the world.
» European: UK, Ireland, Germany, ltaly
» African: West Africa
» Hispanic: Puerto Rico, Mexico
» Asian: China, India

African-Americans and Hispanics are recently admixed (5-15 generations ago)
from differentiated populations.

Admixture proportions vary (admix. LD) = complex kinship.

GWAS and heritability estimation in multiethnic or admixed data?



Recently admixed populations

Chromosome number

African-Americans
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Admixed siblings from different populations?

High Admixture LD:
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B European
B Native American
B Sub-Saharan African
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Moreno-Estrada, et al. (2013)
Ochoa brothers, MX

Solution: treat every individual as its own population!



SNP data
Example: Genotype CC CT TT
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An unstructured population

Pi= 0.25
Individuals mate randomly. ©
Q_
In a large population T, genotypes -
= <
x;; ~ Binomial(2, p/), § e
o
at SNP j with reference allele frequency . oS-
p;, for any individual j.
Q_| | |
This is “Hardy-Weinberg Equilibrium”. © 0 1 5

Genotype ( ;)



Inbreeding coefficient f;-T

p; =0.25, fj =0.5

(o]

Q_
f,": Probability that the two alleles of _
individual j at a random SNP are 2 < |
“identical by descent” (IBD) given an § ©
ancestral population T. DC%

N_|
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A structured population has £,7 > 0.

o _|

o

0 1
Genotype ( ;)



Kinship coefficients cpﬁ

©j: Probability that one allele of
individual j and one of individual k, at a
random SNP, are IBD, given an
ancestral population T.

Local kinship,
given unrelated founders
J, k relation go],;
self 1/2
child 1/4
sibling 1/4

half sibling 1/8
uncle or nephew 1/8
first cousins  1/16
second cousins  1/64
unrelated 0




Kinship model for genotypes

Let T be the ancestral population. In the absence of selection or mutation, allele
frequencies drift randomly from the ancestral frequency p;”, with covariances
modulated by the kinship coefficients:

Elx;| T] = 2p;
Var(x;| T) =2p] (1—p]) (L +£7),

J
COV(X,'J', X,'k’ T) = 4P,T (1 - piT) 90]12

Note that ¢ = 3 (14 £7).

(Wright 1921, Malécot 1948, Wright 1951, Jacquard 1970).



Individual-level analogs of F1, Fis,

“Total” coef., analogous to F:
£, and ] are relative to T.

“Local” coef., analogous to Fis:
L . .

13.1 is relative to L,
Li . .

@i is relative to Ly.

“Structural” coef., analogous to Fst:

T _ L
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Fst for arbitrary population structures

We propose
n
For = > wifi],
j=1

where

> ijT = inbreeding coefficient of L; relative to T

> w; > 0,57, w; =1 are weights

Backward compatible with Fst for subpopulations.
Coherent with Wright's 1951 definition.



Coancestry model and individual allele frequencies

This restricted model assumes the existence of individual-specific allele
frequencies ;;, modulated by coancestry coefficients GJI:

E[ms| T] = p/,
Cov(my, mu| T) = b (1 = p) O,
X,'jlﬂ','j ~ Binomia|(2,7r,-j).

This model excludes local relationships. Given these assumptions, coancestry
and kinship coefficients are the same:

T . . n
Pik it j#k, T
elz{ d o Fst =) wb]
/ T =2pF -1 if j=k = 4



Fst estimation under independent subpopulations

Weir-Cockerham and Hudson Fst  Under independent subpopulations, Fst

estimators with 7; simplify to can be solved for:
1 < 13, —7
AT R —
7ol [,,,z 5T
j=1 =1
1 a 2 1« T Fst
A2 AT - — _ _ Lot
=3 (- B [,,,z pi-p) (1-7)
j=1 =1 1
m
>, 07
,’fslrjliiep = — i=1
> BT (1= p7) + 467
i=1
a.s. FS-I—



Fst estimation under arbitrary coancestry

Weir-Cockerham and Hudson Fst  Under the general coancestry model,
estimators with 7; simplify to system is underdetermined:

N 1 1 1 m | —TI’I( ST — Q_T)
T A2 f

D= — Tii, E|— E | =p(l— _
P n J [m 9i P P) n—1

A 1 < R 1 o~ . N — T 3
U?:n—lz(ﬁij—prf’ E[;pr(l—pf) =p(l—p) (1-07).

m
~n2D -
>0 67: mean coancestry.
~indep i=1
I_—m —
ST

ST pT (1 — 13,-T) + %6’.2 In independent subpopulations
i=1 _ 9T = %FST-

a.s. n (FST - 07—)
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Admixture models

Draw alleles from a mixture of populations:

K
=> PG,
u=1

where gj, is ancestry proportion, p,-s“ is AF in subpopulation S,.
If subpopulations are independent and fsf is Fst of S, relative to T, then

n K
Jk - Z qjuqkufsu Fst = Z Z ququfS-{,-'

Jj=1 u=1



Our admixture simulation

o A) Intermediate population differentiation
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Comparison of population structures in simulation
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Bias estimating the generalized Fst

The popular Weir-Cockerham (WC) and Hudson Fst estimators, formulated for
independent subpopulations, are biased in our admixture simulation:

A) Indep. Subpops. B) Admixture
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Bias estimating kinship coefficients
The popular kinship estimator from genotypes and its limit are

m i'_2AT I._2A.T _ - -
T ,-Zzl(xf Bl) (e = 267) as.  PR— P~k @7

Pik = m
43557 (1)

where gbjT and @7 are weighted mean kinships. In our admixture simulation:
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A new kinship estimator

Bias in new kinship estimator is parametrized by @’ :

S X,"—2A-T Xj —2AIT
AT,OId_i:ZI<J BI) (i = 267) a.s.\%k ¢ —of+@7
Jk - m m oo/ =T )
a4y Pl (1-87) "7 T
i=1
m
X,“—]. Xi —-1)—-1 -
~T,New __ /:ZI( ’ )( - ) 1 a.s. 90]12_907—
SOJk - m + m—>oo/ 1—¢T
4Zl3,T (1_13,'7-)
i=1
~ T ,New

Remaining bias in ¢; " comes from estimating p/ (1 — p/) with p7 (1 — /).



A new kinship estimator

Limit of proposed estimate:

m

>oxg— 1w —1)—1

AT ,New _ i=1
Jjk - m
4387 (1-p7)

If rm(n goﬁ( =0, then

min @T,New a.s.
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Performance of proposed estimator

A) Truth B) Proposed

Individuals
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b

0.1 02 03

-0.1 O

Kinship



Population-level and Individual-level distances in 1000 Genomes

A) Distant populations B) Hispanic populations C) European populations
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Revised Fst estimates in 1000 Genomes

A) Independent Pop Model B) 1000 Genomes C) Differentiation
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We have...

...generalized Fst using parameters for arbitrary structure in terms of individuals.
...connected Fst, kinship coefficients, and admixture models.

...characterized bias of common estimators when assumptions are broken.

...used an admixture simulation to illustrate biases.

...developed new estimators of Fst and kinship/coancestry.



Other work from Dr. Ochoa

Modeling the placebo response in Protein sequence analysis

psychiatric drug trials Improving sequence homology stats
Collaboration with Otsuka Pharma.
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Future work: Selection tests

X;: genotype vector at SNP 1/,
®T: kinship matrix estimate,

p: ancestral allele frequency estimate,

Then this generalized z-score measures deviation of this SNP from the neutral
genetic structure:

(o) )
(1- )

Complements other info such as selective sweeps.

4p,



Future work: Admixture LD
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Simple extension:
The kinship matrix varies per locus
12 depending on population assignments.
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Future work: Kinship in Recent Mutations

Recall the following only holds for neutral SNPs polymorphic in T
E[XU‘ T] = 2piT7
Cov(xy, x| T) = 4p] (1= p/) ¢fi.
A SNP that arose from recent mutation in S instead has p/ =0 or 1 and:
Elx;|S] = 27,
Cov(xj, xik|S) = 4Pis (1 - P,S) SOJ'Sk-

Also recall:
I-¢i)=1—¢p) 1-1£).

Recent mutations require special treatment in GWAS /herit. studies!
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Future work: Variable kinship in GWAS

Suppose the kinship matrix ®] = (/i) varies per locus i:
Cov (X,'j, X,'k‘ T) = 4p,-T (1 — p,-T) gpz—k

This &7 replaces the global kinship 7 used in LMM and adjusted y?> GWAS,
varying given local admixture or the recent mutation model.



Future work: Variable kinship in heritability estimation

Suppose the kinship matrix ¢/ = (goUTk) varies per locus i:
Cov (xj, x| T) = 4p] (1 —p]) SOiJT'k~
Let y = (y;) be a trait controlled by additive genetic effects as
yi=n+Y Bixj+e,
icC
The trait’s covariance structure is now given by the mean kinship at causal loci C:
Cov(y|T) = 0? (hP207 + (1 — h*)I), where

7 = Z Wi‘biT» w; X 5/2PiT(1 - PiT)-
ieC



