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Genetic variation: we’re all mutants!

Each newborn has ≈ 70 new
mutations:

▶ Average mutation rate
≈ 1.1 × 10−8 /base/generation

▶ Higher in male lineage, with age
▶ Number of bases in genome

≈ 3.2 × 109, ×2 for both copies
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Types of mutations

Frazer et al. (2009)

▶ SNP = single nucleotide polymorphism
▶ Indel = insertion or deletion
▶ Structural variant = also large edits (gene or chr level)
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Functional consequences of genetic variation
▶ Protein-coding mutation types

Jonsta247, CC BY-SA 4.0, via Wikimedia Commons

▶ Non-coding mutations can affect
gene expression

▶ Most are neutral:
▶ Reveal relatedness and

population history
▶ A small proportion cause disease
▶ Smallest proportion are beneficial:

▶ New adaptation!
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Dynamics of genetic variation

Colors are alleles
By Gabi Slizewska

▶ Most new mutations
are lost

▶ Some become common
in population

▶ Outcomes are
random

▶ Variation greatest in
small populations

▶ Even disease alleles
can become
common

5 / 33



Human genetic structure: a typical SNP
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Ochoa and Storey (2019a) doi:10.1101/653279

rs17110306; median differentiation given MAF ≥ 10%

Why? Migration and isolation, admixture, family structure
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Single Nucleotide Polymorphism (SNP) data

⇒

Genotype 𝑥𝑖𝑗
CC 0
CT 1
TT 2 ⇒

Individuals

Lo
ci

0 2 2 1 1 0 1
0 2 1 0 1
2 ...

X

7 / 33



Single Nucleotide Polymorphism (SNP) data

⇒

Genotype 𝑥𝑖𝑗
CC 0
CT 1
TT 2

⇒

Individuals

Lo
ci

0 2 2 1 1 0 1
0 2 1 0 1
2 ...

X

7 / 33



Single Nucleotide Polymorphism (SNP) data

⇒

Genotype 𝑥𝑖𝑗
CC 0
CT 1
TT 2 ⇒

Individuals

Lo
ci

0 2 2 1 1 0 1
0 2 1 0 1
2 ...

X

7 / 33



Hardy-Weinberg Equilibrium (HWE): Binomial draws

𝑥𝑖𝑗 = genotype at locus 𝑖 for individual 𝑗.

𝑝𝑖 = frequency of reference allele at locus 𝑖.

Under HWE:

Pr(𝑥𝑖𝑗 = 2) = 𝑝2
𝑖 ,

Pr(𝑥𝑖𝑗 = 1) = 2𝑝𝑖 (1 − 𝑝𝑖) ,
Pr(𝑥𝑖𝑗 = 0) = (1 − 𝑝𝑖)

2 .

HWE not valid under genetic structure!
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Dependence structure of genotype matrix
Individuals

Lo
ci

0 2 2 1 1 0 1
0 2 1 0 1
2 ...

X

High-dimensional binomial data
▶ No general likelihood function
▶ My work: method of moments

Relatedness / Population structure
▶ Dependence between individuals (columns)

Linkage disequilibrium
▶ Dependence between loci (rows)
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Genetic association study: genotype-phenotype correlation
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Nephrotic Syndrome association study
Severe pediatric kidney disease. 1000 cases/1000 controls; multiethnic

Chromosome, Position
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“Manhattan” plots for other diseases

Wellcome Trust Case Control Consortium (2007)
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This problem is hard!

After the human genome (~2000), researchers thought that was the hard part.
Nope!

The missing heritability problem:
▶ Height is highly heritable

▶ ℎ2 ≈ 80%: variance explained by genetics, according to twin/sib studies.
▶ But significant variants only explain 3% of this heritability.

▶ Do we need bigger studies? Some as large as 1M people don’t find much!
▶ Are most causal variants rare? (causes low statistical power)
▶ Is significance too stringent of a criterion?
▶ Could it be epigenetic? Shared environment?
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Why is this problem so hard?

▶ Millions of tests
▶ Polygenicity (many causal variants)
▶ Confounders
▶ Incorrect assumptions: independence / additivity

Ancestry

Genetics

Test Locus All other loci
Environment

Trait
?
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Effects are smaller and rarer than anticipated

Hindorff et al. (2009) PNAS 106:9362–9367
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Genetic architecture of a trait

Manolio et al. (2009) Nature 461:747-753
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Goal: association, not causation!

▶ Ideally, we’d actually find the
causal variants of disease

▶ However, causal variants are likely
not genotyped

▶ Linkage Disequilibrium: variants
near the causal locus are correlated
to each other and to the disease!

Fig. by Andrew Allen, Duke B&B.
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One problem with no causation: prediction outside test pop.
▶ Association depends on correlation between the tested and causal loci

▶ But correlation varies in populations! So associations may not be predictive
▶ Common scenario:

▶ In European-only study, locus 𝑖 is significantly associated with disease
▶ Locus 𝑖 is not correlated to causal locus in Sub-Saharan Africans
▶ So locus 𝑖 does not predict disease in Sub-Saharan Africans

▶ Why? Correlations are stronger outside Africa due to population bottleneck
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Modern technologies for finding variants
Genotyping arrays vs sequencing
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Modern technologies for finding variants

Genotyping arrays

▶ Oldest and cheapest of the two we discuss here
▶ Used by 23andMe, Ancestry, etc.
▶ Pros:

▶ 0.5-1.5 million loci per array
▶ Low missingness

▶ Cons: tests known variants only, a biased set
▶ Most often common variants only
▶ Preiously: biased for variants common in European ancestry
▶ Typically biallelic SNPs (Single Nucleotide Polymorphisms) only
▶ Unlikely to contain causal variants
▶ Some probes fail ⇒ batch effects
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Modern technologies for finding variants

Whole genome sequencing

▶ Short read sequencing at 2x to 30x depths common
▶ Variant: whole exome sequencing (enriched for protein-coding sequences).
▶ Pros:

▶ More likely to include causal variants
▶ Can see short insertions and deletions too (indels)
▶ Can impute missing data assuming correlations

▶ Cons:
▶ Still misses repetitive regions, large (structural) variants
▶ Need special methods for rare variants
▶ More expensive (for now)
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Modern technologies for finding variants

Microarrays Whole genome seq
Cost/person (2019) $50-100 $700-1000
Loci 0.5-1.5 M (fixed) up to 80 M ? (random)
Missingness Low High
Causal locus tested? Probably no Probably yes

22 / 33



Population structure: lack of independence between individuals

In classical association studies, every individual is treated as independent.

In a case-control study, we test for a bias in allele frequencies (𝑋 is a random
genotype):

𝑋|case ∼ Binomial(2, 𝑝case),
𝑋|control ∼ Binomial(2, 𝑝control),

reject 𝐻0 if: 𝑝case ≠ 𝑝control.

However:
▶ Allele frequencies often vary between human subpopulations
▶ Disease prevalence may also vary between subpopulations (if causal loci also

vary in frequency across the world!)
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Median human locus by differentiation
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Ochoa and Storey (2019a) doi:10.1101/653279

rs17110306; median differentiation among loci with minor allele frequency ≥ 10%

Classical association tests assume allele frequency is the same across the world!
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Kinship (covariance) matrix of world-wide human population

Ochoa and Storey (2019) doi:10.1101/653279
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Ancestry as a statistical confounder

Genetic Ancestry

Genotype Disease?
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PCA: Principal Component Analysis

Moreno-Estrada et al. (2013)

Use top eigenvectors of covariance
matrix in any regression approach!

PCs map to ancestry.

”PCs” are top eigenvectors of
kinship matrix.

Pros: Fast!

Cons: Fails on family data.
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Genetic association for structured pops: PCA and LMM

Association with Principal Components Analysis (PCA)
and Linear Mixed-effects Model (LMM):

PCA ∶ y = 1𝛼 + x𝑖𝛽 + U𝑑𝛾𝑑 + 𝜖,
LMM ∶ y = 1𝛼 + x𝑖𝛽 + s + 𝜖.

U𝑑 are top 𝑑 eigenvectors of kinship matrix Φ.
s ∼ Normal (0, 𝜎2Φ).

▶ PCA is faster but low-dimensional
▶ LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885

28 / 33

https://doi.org/10.1101/2022.03.25.485885


Genetic association for structured pops: PCA and LMM
Association with Principal Components Analysis (PCA)

and Linear Mixed-effects Model (LMM):

PCA ∶ y = 1𝛼 + x𝑖𝛽 + U𝑑𝛾𝑑 + 𝜖,
LMM ∶ y = 1𝛼 + x𝑖𝛽 + s + 𝜖.

U𝑑 are top 𝑑 eigenvectors of kinship matrix Φ.
s ∼ Normal (0, 𝜎2Φ).

▶ PCA is faster but low-dimensional
▶ LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885

28 / 33

https://doi.org/10.1101/2022.03.25.485885


Genetic association for structured pops: PCA and LMM
Association with Principal Components Analysis (PCA)

and Linear Mixed-effects Model (LMM):

PCA ∶ y = 1𝛼 + x𝑖𝛽 + U𝑑𝛾𝑑 + 𝜖,
LMM ∶ y = 1𝛼 + x𝑖𝛽 + s + 𝜖.

U𝑑 are top 𝑑 eigenvectors of kinship matrix Φ.
s ∼ Normal (0, 𝜎2Φ).

▶ PCA is faster but low-dimensional
▶ LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885

28 / 33

https://doi.org/10.1101/2022.03.25.485885


Genetic association for structured pops: PCA and LMM
Association with Principal Components Analysis (PCA)

and Linear Mixed-effects Model (LMM):

PCA ∶ y = 1𝛼 + x𝑖𝛽 + U𝑑𝛾𝑑 + 𝜖,
LMM ∶ y = 1𝛼 + x𝑖𝛽 + s + 𝜖.

U𝑑 are top 𝑑 eigenvectors of kinship matrix Φ.
s ∼ Normal (0, 𝜎2Φ).

▶ PCA is faster but low-dimensional
▶ LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885

28 / 33

https://doi.org/10.1101/2022.03.25.485885


Genetic association for structured pops: PCA and LMM
Association with Principal Components Analysis (PCA)

and Linear Mixed-effects Model (LMM):

PCA ∶ y = 1𝛼 + x𝑖𝛽 + U𝑑𝛾𝑑 + 𝜖,
LMM ∶ y = 1𝛼 + x𝑖𝛽 + s + 𝜖.

U𝑑 are top 𝑑 eigenvectors of kinship matrix Φ.
s ∼ Normal (0, 𝜎2Φ).

▶ PCA is faster but low-dimensional
▶ LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885

28 / 33

https://doi.org/10.1101/2022.03.25.485885


PCA < LMM in association for real datasets
1000 Genomes Project
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Numerous distant relatives in real datasets
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Numerous distant relatives in real datasets explain PCA < LMM
Human Origins
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What happens after we find significant loci?

Recall we probably do not have causal locus (unless using deep sequencing).
▶ Verify association in a validation dataset (disjoint from initial study)
▶ Fine mapping: sequence region and retest

▶ Beware “winner’s curse”
▶ Validate experimentally (animal model, tissue culture)

Association variants are hard to interpret without experiments:
▶ 3% of human genome is protein-coding (most interpretable)
▶ Most non-coding sequences are of unknown function

▶ Except: promoters, enhancers, splice sites, etc
▶ Link intergenic variant to closest gene often incorrect!
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What happens after we find significant loci?

▶ … and then, variant/gene might suggest a treatment the disease

▶ Test treatment in vitro
▶ Test on an animal model
▶ Test on humans
▶ Make money
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