Statistical Genetics Research: Kinship, Bias, Admixture

Alejandro Ochoa

StatGen, Biostatistics \& Bioinformatics - Duke University
2022-07-08 - LatMath conference, UCLA IPAM

How did I get here? A zigzaggy line

How did I get here? A zigzaggy line

How did I get here? A zigzaggy line

- High school: math olympiad in Mexico
- News: Human Genome Project (2000)

How did I get here? A zigzaggy line

- Born in El Paso, Texas an an in Ciudad Juárez, México Id
- High school: math olympiad in Mexico
- News: Human Genome Project (2000)
- College: MIT
- Started Bio major; added Math minor; ended up Bio + Math double major
- No applied math/stats ©
- UG research: computational protein design

How did I get here? A zigzaggy line

- Born in El Paso, Texas 脣, grew up in Ciudad Juárez, México 【I
- High school: math olympiad in Mexico
- News: Human Genome Project (2000)
- College: MIT

Started Bio major; added Math minor; ended up Bio + Math double major

- No applied math/stats
$>$ UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
- First serious exposure to p-values, permutation tests
- Joined a Comp Bio lab: protein domain prediction + malaria

Late started doing real statistics: q-values, IFDRs

How did I get here? A zigzaggy line

- Born in El Paso, Texas Elat grew up in Ciudad Juárez, México
- High school: math olympiad in Mexico
- News: Human Genome Project (2000)
- College: MIT

Started Bio major; added Math minor; ended up Bio + Math double major

- No applied math/stats
$>$ UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
- First serious exposure to p-values, permutation tests
- Joined a Comp Bio lab: protein domain prediction + malaria
- Late started doing real statistics: q-values, IFDRs
- Postdoc: Princeton
- Switched to human statistical genetics!
- Calculated bias of common estimators, derived new unbiased estimator

How did I get here? A zigzaggy line

- High school: math olympiad in Mexico
- News: Human Genome Project (2000)
- College: MIT
- Started Bio major; added Math minor; ended up Bio + Math double major
- No applied math/stats
$>$ UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
- First serious exposure to p -values, permutation tests
- Joined a Comp Bio lab: protein domain prediction + malaria
- Late started doing real statistics: q-values, IFDRs
- Postdoc: Princeton
- Switched to human statistical genetics!
- Calculated bias of common estimators, derived new unbiased estimator
- Assistant Professor: Duke, Biostats!

Genetic variation: we're all mutants!

Each newborn has ≈ 70 new mutations!

- Average mutation rate $\approx 1.1 \times 10^{-8} /$ base $/$ generation
\rightarrow Higher in male lineage, with age
$>$ Number of bases in genome $\approx 3.2 \times 10^{9}, \times 2$ for both copies

Dynamics of genetic variation

- Most new mutations are lost
- Some become common in population
$>$ Outcomes are random
- Variation greatest in small populations
- Even disease alleles can become common

Human genetic structure: a typical allele

Ochoa and Storey (2019a) doi:10.1101/653279
rs17110306; median differentiation given MAF $\geq 10 \%$

Single Nucleotide Polymorphism (SNP) data

Single Nucleotide Polymorphism (SNP) data

Single Nucleotide Polymorphism (SNP) data

	Individuals
	$\begin{array}{llllll} 0 & 2 & 211 & 1 \\ 0 & 2 & 1 & 0 & 1 \\ 2 \ldots \end{array}$
$\Rightarrow \quad \stackrel{\text { O}}{ } \quad$	

X

Dependence structure of genotype matrix

	Individuals
	$\begin{array}{lllllll} 0 & 2 & 2 & 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 & 1 & & \\ 2 & \ldots & & & \end{array}$
-	

High-dimensional binomial data
$>$ No general likelihood function

- My work: method of moments

X

Dependence structure of genotype matrix

	Individuals
	$\begin{array}{lllllll} 0 & 2 & 2 & 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 & 1 \\ 2 & \ldots & & \end{array}$
-	

High-dimensional binomial data
$>$ No general likelihood function

- My work: method of moments

Relatedness / Population structure

$>$ Dependence between individuals (columns)

Dependence structure of genotype matrix

High-dimensional binomial data

- No general likelihood function
- My work: method of moments

Relatedness / Population structure

- Dependence between individuals (columns)

Linkage disequilibrium

- Dependence between loci (rows)

X

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{i j} \in\{0,1,2\}$:

$$
\mathrm{E}\left[x_{i j}\right]=2 p_{i}, \quad \operatorname{Cov}\left(x_{i j}, x_{i k}\right)=4 p_{i}\left(1-p_{i}\right) \varphi_{j k} .
$$

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{i j} \in\{0,1,2\}$:

$$
\mathrm{E}\left[x_{i j}\right]=2 p_{i}, \quad \operatorname{Cov}\left(x_{i j}, x_{i k}\right)=4 p_{i}\left(1-p_{i}\right) \varphi_{j k} .
$$

Standard estimator is biased:
$\hat{p}_{i}=\frac{1}{2 n} \sum_{j=1}^{n} x_{i j}, \quad \hat{\varphi}_{j k}^{\text {std }}=\frac{1}{m} \sum_{i=1}^{m} \frac{\left(x_{i j}-2 \hat{p}_{i}\right)\left(x_{i k}-2 \hat{p}_{i}\right)}{4 \hat{p}_{i}\left(1-\hat{p}_{i}\right)} \approx \frac{\varphi_{j k}-\bar{\varphi}_{j}-\bar{\varphi}_{k}+\bar{\varphi}}{1-\bar{\varphi}}$.

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{i j} \in\{0,1,2\}$:

$$
\mathrm{E}\left[x_{i j}\right]=2 p_{i}, \quad \operatorname{Cov}\left(x_{i j}, x_{i k}\right)=4 p_{i}\left(1-p_{i}\right) \varphi_{j k} .
$$

Standard estimator is biased:
$\hat{p}_{i}=\frac{1}{2 n} \sum_{j=1}^{n} x_{i j}, \quad \hat{\varphi}_{j k}^{\text {std }}=\frac{1}{m} \sum_{i=1}^{m} \frac{\left(x_{i j}-2 \widehat{p}_{i}\right)\left(x_{i k}-2 \widehat{p}_{i}\right)}{4 \hat{p}_{i}\left(1-\hat{p}_{i}\right)} \approx \frac{\varphi_{j k}-\bar{\varphi}_{j}-\bar{\varphi}_{k}+\bar{\varphi}}{1-\bar{\varphi}}$.
popkin: first unbiased kinship estimator! R package (Ochoa and Storey, 2021)

$$
A_{j k}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i j}-1\right)\left(x_{i k}-1\right)-1, \quad \hat{\varphi}_{j k}^{\text {new }}=1-\frac{A_{j k}}{\hat{A}_{\min }} \xrightarrow[m \rightarrow \infty]{\text { a.s. }} \varphi_{j k} .
$$

Dataset: Human Origins

Lazaridis et al. (2014), (2016); Skoglund et al. (2016)
2,922 indivs. from 243 locs. - 588,091 loci - Array

Kinship matrix of world-wide human population

Standard kinship estimator is severely biased

Ochoa and Storey (2019) doi:10.1101/653279

Kinship bias: Consequences? Applications?

- Genetic association studies
- Heritability estimation
- Admixture inference

Genetic association study: genotype-phenotype correlation

Genetic association study: genotype-phenotype correlation
As Table

Genetic association study: genotype-phenotype correlation As Table As Regression

Genetic association study: genotype-phenotype correlation As Table As Regression

Continuous trait

Genetic association study: genotype-phenotype correlation As Table As Regression

Continuous trait

Genome Scan

Nephrotic Syndrome association study

Severe pediatric kidney disease. 1000 cases/1000 controls; multiethnic

Why is this problem so hard?

- Millions of tests
- Polygenicity (many causal variants)
- Confounders
- Incorrect assumptions: independence / additivity

Why is this problem so hard?

- Millions of tests
- Polygenicity (many causal variants)
- Confounders
- Incorrect assumptions: independence / additivity

Kinship bias does not affect genetic associations

Kinship bias does not affect genetic associations

Kinship bias does not affect genetic associations

Linear algebra proof!

Transforming true to biased kinship matrices:
Φ : \quad True kinship matrix,
Φ^{\prime} : Limit of biased estimator,
$\Phi^{\prime}=\frac{1}{1-\bar{\varphi}} \mathbf{C} \Phi \mathbf{C}$,
$\mathbf{C}=\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{\top}: \quad$ Centering matrix.

Kinship bias does not affect genetic associations

Association test is a regression with

Linear algebra proof!
Transforming true to biased kinship matrices:

Ф: True kinship matrix,
Φ^{\prime} : Limit of biased estimator,
$\Phi^{\prime}=\frac{1}{1-\bar{\varphi}} \mathbf{C} \Phi \mathbf{C}$,
$\mathbf{C}=\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{\top}: \quad$ Centering matrix.
correlated residuals:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{1} \alpha+\mathbf{x}_{i} \beta_{i}+\mathbf{s}+\epsilon \\
& \mathbf{s} \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi\right) \\
& \epsilon \sim \operatorname{Normal}\left(\mathbf{0}, \sigma_{E}^{2} \mathbf{I}\right)
\end{aligned}
$$

Kinship bias does not affect genetic associations

Association test is a regression with

Linear algebra proof!
Transforming true to biased kinship matrices:

$$
\Phi: \quad \text { True kinship matrix, }
$$

Φ^{\prime} : Limit of biased estimator, $\Phi^{\prime}=\frac{1}{1-\bar{\varphi}} \mathbf{C} \Phi \mathbf{C}$,
$\mathbf{C}=\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{\top}: \quad$ Centering matrix.
correlated residuals:

$$
\begin{aligned}
& \mathbf{y}=\mathbf{1} \alpha+\mathbf{x}_{i} \beta_{i}+\mathbf{s}+\epsilon, \\
& \mathbf{s} \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi\right), \\
& \epsilon \sim \operatorname{Normal}\left(\mathbf{0}, \sigma_{E}^{2} \mathbf{I}\right) .
\end{aligned}
$$

Kinship bias compensated by intercept!

$$
\begin{aligned}
\mathrm{s}^{\prime}=\mathbf{C s} & \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2 \prime} \Phi^{\prime}\right), \\
\sigma_{G}^{2 \prime} & =(1-\bar{\varphi}) \sigma_{G}^{2}, \\
\mathrm{~s}^{\prime} & =\mathrm{s}-\mathbf{1} \bar{s}, \\
\alpha^{\prime} & =\alpha+\bar{s}
\end{aligned}
$$

Kinship bias affects heritability estimation

Model:

$$
\mathbf{y}=1 \alpha+\mathbf{s}+\epsilon
$$

$\mathbf{s}+\epsilon \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi+\sigma_{E}^{2} \mathbf{I}\right)$.
Heritability definition:

$$
h^{2}=\frac{\sigma_{G}^{2}}{\sigma_{G}^{2}+\sigma_{E}^{2}}
$$

Variance is estimated with bias:

$$
\sigma_{G}^{2 \prime}=(1-\bar{\varphi}) \sigma_{G}^{2}
$$

Kinship bias affects heritability estimation
Model:
Trait simulation type

$$
\mathbf{y}=\mathbf{1} \alpha+\mathbf{s}+\epsilon
$$

$\mathbf{s}+\epsilon \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi+\sigma_{E}^{2} \mathbf{I}\right)$.
Heritability definition:

$$
h^{2}=\frac{\sigma_{G}^{2}}{\sigma_{G}^{2}+\sigma_{E}^{2}}
$$

Variance is estimated with bias:

$$
\sigma_{G}^{2 \prime}=(1-\bar{\varphi}) \sigma_{G}^{2}
$$

There are more sources of bias!!!

LIGERA (Llght GEnetic Robust Association): a reversed LMM

Linear mixed-effects model (LMM):

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{s}+\epsilon, \quad \mathbf{s}+\epsilon \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi+\sigma_{E}^{2} I\right) .
$$

LIGERA:

$$
\mathbf{x}_{i}=\mathbf{Y} \beta+\mathbf{s}, \quad \mathbf{s} \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} \Phi\right),
$$

where here \mathbf{X}, \mathbf{Y} include covariates and intercept.

LIGERA (Llght GEnetic Robust Association): a reversed LMM

Linear mixed-effects model (LMM):

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{s}+\epsilon, \quad \mathbf{s}+\epsilon \sim \operatorname{Normal}\left(\mathbf{0}, 2 \sigma_{G}^{2} \Phi+\sigma_{E}^{2} I\right) .
$$

LIGERA:

$$
\mathbf{x}_{i}=\mathbf{Y} \beta+\mathbf{s}, \quad \mathbf{s} \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} \Phi\right),
$$

where here \mathbf{X}, \mathbf{Y} include covariates and intercept.

- LIGERA is faster: no need to fit $\sigma_{G}^{2}, \sigma_{E}^{2}$, a slow LMM step!
- But Standard Estimator is singular, LIGERA requires non-singular Φ

Recently-admixed populations

African-Americans

Baharian et al. (2016)

Moreno-Estrada et al. (2013)

Population kinship driven by admixture in Hispanics

Kinship under the admixture model

Kinship under the admixture model

Can we reverse this formula?

Constrained optimization, regularized objective:

$$
F=\left\|\hat{\Theta}-\mathbf{Q} \Psi \mathbf{Q}^{\top}\right\|^{2}+\gamma \operatorname{tr}(\Psi)
$$

AdmixCor: accuracy

Unbiased kinship estimates: new models, opportunities

Acknowledgments

Ochoa Lab	
Amika Sood	Duke University
Tiffany Tu	Rasheed Gbadegesin
RP Pornmongkolsuk	Kouros Owzar
Yeth Hauser	
Yiai Yao	Yi-Ju Li
Zhuoran Hou	Andrew Allen
Jiajie Shen	Amy Goldberg
Emmanuel Mokel	
Princeton	Funding
University	NIH
John D. Storey	Whitehead Scholars

Duke University School of Medicine

- DrAlexOchoa
ochoalab.github.io
alejandro.ochoa@duke.edu

