Statistical Genetics Research: Kinship, Bias, Admixture

Alejandro Ochoa

StatGen, Biostatistics & Bioinformatics — Duke University

2022-07-08 — LatMath conference, UCLA IPAM

🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🚺

🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🛐

- ▶ High school: math olympiad in Mexico
 - News: Human Genome Project (2000)

- 🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🚺
 - High school: math olympiad in Mexico
 - News: Human Genome Project (2000)
- College: MIT
 - Started Bio major; added Math minor; ended up Bio + Math double major
 - 🕨 No applied math/stats 😱
 - UG research: computational protein design

- 🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🚺
 - High school: math olympiad in Mexico
 - News: Human Genome Project (2000)
- College: MIT
 - Started Bio major; added Math minor; ended up Bio + Math double major
 - 🕨 No applied math/stats 😱
 - UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
 - First serious exposure to p-values, permutation tests
 - 🕨 Joined a Comp Bio lab: protein domain prediction + malaria 🦟
 - Late started doing real statistics: q-values, IFDRs

- 🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🚺
 - High school: math olympiad in Mexico
 - News: Human Genome Project (2000)
- College: MIT
 - Started Bio major; added Math minor; ended up Bio + Math double major
 - No applied math/stats 😱
 - UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
 - First serious exposure to p-values, permutation tests
 - 🕨 Joined a Comp Bio lab: protein domain prediction + malaria 🦟
 - Late started doing real statistics: q-values, IFDRs

Postdoc: Princeton

- Switched to human statistical genetics! Solution
- Calculated bias of common estimators, derived new unbiased estimator

- 🕨 Born in El Paso, Texas 烂, grew up in Ciudad Juárez, México 🚺
 - High school: math olympiad in Mexico
 - News: Human Genome Project (2000)
- College: MIT
 - Started Bio major; added Math minor; ended up Bio + Math double major
 - 🕨 No applied math/stats 😱
 - UG research: computational protein design
- PhD: Princeton, Molecular Bio (really Computational Bio)
 - First serious exposure to p-values, permutation tests
 - 🕨 Joined a Comp Bio lab: protein domain prediction + malaria 🦟
 - Late started doing real statistics: q-values, IFDRs

Postdoc: Princeton

- Switched to human statistical genetics! Solution
- Calculated bias of common estimators, derived new unbiased estimator
- Assistant Professor: Duke, Biostats!

Genetic variation: we're all mutants!

Each newborn has ≈ 70 new mutations!

Average mutation rate
 ≈ 1.1 × 10⁻⁸ /base/generation

 Higher in male lineage, with age

 Number of bases in genome

 ≈ 3.2 × 10⁹, ×2 for both copies

Dynamics of genetic variation

 Most new mutations are lost

- Some become common in population
 - Outcomes are random
 - Variation greatest in small populations
 - Even disease alleles can become common

Human genetic structure: a typical allele

Ochoa and Storey (2019a) doi:10.1101/653279

rs17110306; median differentiation given MAF $\geq 10\%$

Single Nucleotide Polymorphism (SNP) data

Single Nucleotide Polymorphism (SNP) data

Single Nucleotide Polymorphism (SNP) data

Dependence structure of genotype matrix

Individuals 0221101 02101 2 ... -oci

High-dimensional binomial data
No general likelihood function
My work: method of moments

Dependence structure of genotype matrix

Individuals 0221101 02101 2 ... -oci

High-dimensional binomial data
No general likelihood function
My work: method of moments

Relatedness / Population structure

Dependence between individuals (columns)

Dependence structure of genotype matrix

Individuals 0221101 02101 2 ... -oci

High-dimensional binomial data
No general likelihood function
My work: method of moments

Relatedness / Population structure

Dependence between individuals (columns)

Linkage disequilibrium

Dependence between loci (rows)

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{ij} \in \{0, 1, 2\}$:

$$\mathbf{E}[\boldsymbol{x_{ij}}] = 2p_i, \qquad \mathbf{Cov}(\boldsymbol{x_{ij}}, \boldsymbol{x_{ik}}) = 4p_i \left(1-p_i\right) \varphi_{jk}.$$

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{ij} \in \{0, 1, 2\}$:

$$\mathbf{E}[\boldsymbol{x_{ij}}] = 2p_i, \qquad \mathbf{Cov}(\boldsymbol{x_{ij}}, \boldsymbol{x_{ik}}) = 4p_i \left(1-p_i\right) \varphi_{jk}.$$

Standard estimator is **biased**:

$$\hat{p}_i = \frac{1}{2n} \sum_{j=1}^n x_{ij}, \quad \hat{\varphi}_{jk}^{\mathrm{std}} = \frac{1}{m} \sum_{i=1}^m \frac{\left(x_{ij} - 2\hat{p}_i\right) \left(x_{ik} - 2\hat{p}_i\right)}{4\hat{p}_i \left(1 - \hat{p}_i\right)} \approx \frac{\varphi_{jk} - \bar{\varphi}_j - \bar{\varphi}_k + \bar{\varphi}}{1 - \bar{\varphi}}.$$

New kinship/GRM estimator

Kinship model for neutral genotypes $x_{ij} \in \{0, 1, 2\}$:

$$\mathbf{E}[\boldsymbol{x_{ij}}] = 2p_i, \qquad \mathbf{Cov}(\boldsymbol{x_{ij}}, \boldsymbol{x_{ik}}) = 4p_i \left(1-p_i\right) \varphi_{jk}.$$

Standard estimator is **biased**:

$$\hat{p}_i = \frac{1}{2n} \sum_{j=1}^n x_{ij}, \quad \hat{\varphi}_{jk}^{\mathsf{std}} = \frac{1}{m} \sum_{i=1}^m \frac{\left(x_{ij} - 2\hat{p}_i\right) \left(x_{ik} - 2\hat{p}_i\right)}{4\hat{p}_i \left(1 - \hat{p}_i\right)} \approx \frac{\varphi_{jk} - \bar{\varphi}_j - \bar{\varphi}_k + \bar{\varphi}}{1 - \bar{\varphi}}.$$

popkin: first unbiased kinship estimator! R package (Ochoa and Storey, 2021)

$$A_{jk} = \frac{1}{m} \sum_{i=1}^{m} (x_{ij} - 1)(x_{ik} - 1) - 1, \qquad \hat{\varphi}_{jk}^{\text{new}} = 1 - \frac{A_{jk}}{\hat{A}_{\min}} \xrightarrow[m \to \infty]{\text{a.s.}} \varphi_{jk}.$$

к и м https://github.com/StoreyLab/popkin

Dataset: Human Origins

Lazaridis et al. (2014), (2016); Skoglund et al. (2016)

2,922 indivs. from 243 locs. - 588,091 loci - Array

Kinship matrix of world-wide human population

Standard kinship estimator is severely biased

New

Standard

Ochoa and Storey (2019) doi:10.1101/653279

Kinship bias: Consequences? Applications?

Heritability estimation

Nephrotic Syndrome association study

Severe pediatric kidney disease. 1000 cases/1000 controls; multiethnic

Why is this problem so hard?

- Millions of tests
- Polygenicity (many causal variants)
- Confounders
- Incorrect assumptions: independence / additivity

Why is this problem so hard?

- Millions of tests
- Polygenicity (many causal variants)
- Confounders
- Incorrect assumptions: independence / additivity

Linear algebra proof!

Transforming true to biased kinship matrices:

- Φ : True kinship matrix,
- Φ' : Limit of biased estimator,

$$\begin{split} \Phi' &= \frac{1}{1 - \bar{\varphi}} \mathbf{C} \Phi \mathbf{C}, \\ \mathbf{C} &= \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\top : \quad \text{Centering matrix.} \end{split}$$

Linear algebra proof!

Transforming true to biased kinship matrices:

- Φ : True kinship matrix,
- Φ' : Limit of biased estimator,

$$\begin{split} \Phi' &= \frac{1}{1 - \bar{\varphi}} \mathbf{C} \Phi \mathbf{C}, \\ \mathbf{C} &= \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\top : \quad \text{Centering matrix.} \end{split}$$

Association test is a regression with correlated residuals:

$$\begin{split} \mathbf{y} &= \mathbf{1}\alpha + \mathbf{x}_i\beta_i + \mathbf{s} + \epsilon, \\ \mathbf{s} &\sim \mathsf{Normal}\left(\mathbf{0}, 2\sigma_G^2\Phi\right), \\ \epsilon &\sim \mathsf{Normal}\left(\mathbf{0}, \sigma_E^2\mathbf{I}\right). \end{split}$$

Linear algebra proof!

Transforming true to biased kinship matrices:

- Φ : True kinship matrix,
- Φ' : Limit of biased estimator,

$$\begin{split} \Phi' &= \frac{1}{1 - \bar{\varphi}} \mathbf{C} \Phi \mathbf{C}, \\ \mathbf{C} &= \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\top : \quad \text{Centering matrix.} \end{split}$$

Association test is a regression with correlated residuals:

$$\begin{split} \mathbf{y} &= \mathbf{1} \boldsymbol{\alpha} + \mathbf{x}_i \boldsymbol{\beta}_i + \mathbf{s} + \boldsymbol{\epsilon}, \\ \mathbf{s} &\sim \mathsf{Normal}\left(\mathbf{0}, 2\sigma_G^2 \Phi\right), \\ \boldsymbol{\epsilon} &\sim \mathsf{Normal}\left(\mathbf{0}, \sigma_E^2 \mathbf{I}\right). \end{split}$$

Kinship bias compensated by intercept!

$$\begin{split} \mathbf{s}' &= \mathbf{C}\mathbf{s} \sim \mathsf{Normal}\left(\mathbf{0}, 2\sigma_G^{2\prime} \Phi'\right), \\ \sigma_G^{2\prime} &= (1 - \bar{\varphi})\sigma_G^2, \\ \mathbf{s}' &= \mathbf{s} - \mathbf{1}\bar{s}, \\ \alpha' &= \alpha + \bar{s} \end{split}$$

Kinship bias affects heritability estimation Model:

$$\begin{split} \mathbf{y} &= \mathbf{1} \alpha + \mathbf{s} + \epsilon, \\ \mathbf{s} &+ \epsilon \sim \mathsf{Normal} \left(\mathbf{0}, 2\sigma_G^2 \Phi + \sigma_E^2 \mathbf{I} \right). \end{split}$$

Heritability definition:

$$h^2 = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_E^2}.$$

Variance is estimated with bias:

$$\sigma_G^{2\prime} = (1 - \bar{\varphi})\sigma_G^2.$$

Kinship bias affects heritability estimation Model:

Heritability estimate

$$\begin{split} \mathbf{y} &= \mathbf{1}\alpha + \mathbf{s} + \epsilon, \\ \mathbf{s} + \epsilon &\sim \mathsf{Normal}\left(\mathbf{0}, 2\sigma_G^2 \Phi + \sigma_E^2 \mathbf{I}\right). \end{split}$$

Heritability definition:

$$h^2 = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_E^2}.$$

Variance is estimated with bias:

$$\sigma_G^{2\prime} = (1 - \bar{\varphi})\sigma_G^2.$$

There are more sources of bias!!!

LIGERA (LIght GEnetic Robust Association): a reversed LMM

Linear mixed-effects model (LMM):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{s} + \boldsymbol{\epsilon}, \qquad \mathbf{s} + \boldsymbol{\epsilon} \sim \operatorname{Normal}\left(\mathbf{0}, 2\sigma_G^2 \Phi + \sigma_E^2 I\right).$$

LIGERA:

$$\mathbf{x}_i = \mathbf{Y}\boldsymbol{\beta} + \mathbf{s}, \qquad \mathbf{s} \sim \mathsf{Normal}\left(\mathbf{0}, \sigma^2 \Phi\right),$$

where here \mathbf{X}, \mathbf{Y} include covariates and intercept.

LIGERA (LIght GEnetic Robust Association): a reversed LMM

Linear mixed-effects model (LMM):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{s} + \boldsymbol{\epsilon}, \qquad \mathbf{s} + \boldsymbol{\epsilon} \sim \operatorname{Normal}\left(\mathbf{0}, 2\sigma_G^2 \Phi + \sigma_E^2 I\right).$$

LIGERA:

$$\mathbf{x}_i = \mathbf{Y}\boldsymbol{\beta} + \mathbf{s}, \qquad \mathbf{s} \sim \mathsf{Normal}\left(\mathbf{0}, \sigma^2 \Phi\right),$$

where here \mathbf{X}, \mathbf{Y} include covariates and intercept.

▶ LIGERA is faster: no need to fit σ²_G, σ²_E, a slow LMM step!
 ▶ But Standard Estimator is singular, LIGERA requires non-singular Φ

Recently-admixed populations

Baharian et al. (2016)

Population kinship driven by admixture in Hispanics

Kinship under the admixture model

$\Theta = \mathbf{Q} \Psi \mathbf{Q}^ op$ (Only for unbiased kinship)

Kinship under the admixture model

$\boldsymbol{\Theta} = \mathbf{Q} \boldsymbol{\Psi} \mathbf{Q}^\top$

(Only for unbiased kinship)

Can we reverse this formula?

Constrained optimization, regularized objective:

$$F = \left\| \hat{\Theta} - \mathbf{Q} \Psi \mathbf{Q}^\top \right\|^2 + \gamma \operatorname{tr}(\Psi).$$

AdmixCor: accuracy

Unbiased kinship estimates: new models, opportunities

Acknowledgments

Ochoa Lab

Amika Sood Tiffany Tu RP Pornmongkolsuk Yiqi Yao Zhuoran Hou Jiajie Shen Emmanuel Mokel

Princeton University John D. Storey

Duke University

Rasheed Gbadegesin Kouros Owzar Beth Hauser Yi-Ju Li Andrew Allen Amy Goldberg

Funding NIH Whitehead Scholars

✓ DrAlexOchoa☆ ochoalab.github.io

🗹 alejandro.ochoa@duke.edu