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How did I get here? A zigzaggy line

▶ Born in El Paso, Texas , grew up in Ciudad Juárez, México
▶ High school: math olympiad in Mexico

▶ News: Human Genome Project (2000)
▶ College: MIT

▶ Started Bio major; added Math minor; ended up Bio + Math double major
▶ No applied math/stats
▶ UG research: computational protein design

▶ PhD: Princeton, Molecular Bio (really Computational Bio)
▶ First serious exposure to p-values, permutation tests
▶ Joined a Comp Bio lab: protein domain prediction + malaria
▶ Late started doing real statistics: q-values, lFDRs

▶ Postdoc: Princeton
▶ Switched to human statistical genetics!
▶ Calculated bias of common estimators, derived new unbiased estimator

▶ Assistant Professor: Duke, Biostats!
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Genetic variation: we’re all mutants!

Each newborn has ≈ 70 new
mutations!

▶ Average mutation rate
≈ 1.1 × 10−8 /base/generation

▶ Higher in male lineage, with age
▶ Number of bases in genome

≈ 3.2 × 109, ×2 for both copies
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Dynamics of genetic variation

Colors are alleles
By Gabi Slizewska

▶ Most new mutations
are lost

▶ Some become common
in population

▶ Outcomes are
random

▶ Variation greatest in
small populations

▶ Even disease alleles
can become
common
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Human genetic structure: a typical allele
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Ochoa and Storey (2019a) doi:10.1101/653279

rs17110306; median differentiation given MAF ≥ 10%
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Single Nucleotide Polymorphism (SNP) data

⇒

Genotype 𝑥𝑖𝑗
CC 0
CT 1
TT 2 ⇒

Individuals
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Dependence structure of genotype matrix
Individuals

Lo
ci

0 2 2 1 1 0 1
0 2 1 0 1
2 ...

X

High-dimensional binomial data
▶ No general likelihood function
▶ My work: method of moments

Relatedness / Population structure
▶ Dependence between individuals (columns)

Linkage disequilibrium
▶ Dependence between loci (rows)
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New kinship/GRM estimator
Kinship model for neutral genotypes 𝑥𝑖𝑗 ∈ {0, 1, 2}:

E[𝑥𝑖𝑗] = 2𝑝𝑖, Cov(𝑥𝑖𝑗, 𝑥𝑖𝑘) = 4𝑝𝑖 (1 − 𝑝𝑖) 𝜑𝑗𝑘.

Standard estimator is biased:

̂𝑝𝑖 = 1
2𝑛

𝑛
∑
𝑗=1

𝑥𝑖𝑗, �̂�std
𝑗𝑘 = 1

𝑚

𝑚
∑
𝑖=1

(𝑥𝑖𝑗 − 2 ̂𝑝𝑖) (𝑥𝑖𝑘 − 2 ̂𝑝𝑖)
4 ̂𝑝𝑖 (1 − ̂𝑝𝑖)

≈
𝜑𝑗𝑘 − �̄�𝑗 − �̄�𝑘 + �̄�

1 − �̄�
.

popkin: first unbiased kinship estimator! R package (Ochoa and Storey, 2021)

𝐴𝑗𝑘 = 1
𝑚

𝑚
∑
𝑖=1

(𝑥𝑖𝑗 − 1)(𝑥𝑖𝑘 − 1) − 1, �̂�new
𝑗𝑘 = 1 −

𝐴𝑗𝑘
̂𝐴min

a.s.
−−−−→
𝑚→∞

𝜑𝑗𝑘.

https://github.com/StoreyLab/popkin
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Dataset: Human Origins
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2,922 indivs. from 243 locs. — 588,091 loci — Array
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Kinship matrix of world-wide human population

Ochoa and Storey (2019) doi:10.1101/653279
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Standard kinship estimator is severely biased
New Standard

Ochoa and Storey (2019) doi:10.1101/653279
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Kinship bias: Consequences? Applications?

▶ Genetic association studies

▶ Heritability estimation

▶ Admixture inference
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Genetic association study: genotype-phenotype correlation
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Nephrotic Syndrome association study
Severe pediatric kidney disease. 1000 cases/1000 controls; multiethnic

Chromosome, Position
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Why is this problem so hard?
▶ Millions of tests
▶ Polygenicity (many causal variants)
▶ Confounders
▶ Incorrect assumptions: independence / additivity

Ancestry

Genetics

Test Locus All other loci
Environment

Trait
?
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Kinship bias does not affect genetic associations

New popkin
kinship estimator

Standard
kinship estimator
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Kinship bias does not affect genetic associations
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Kinship bias does not affect genetic associations

Linear algebra proof!

Transforming true to biased kinship
matrices:

Φ ∶ True kinship matrix,
Φ′ ∶ Limit of biased estimator,

Φ′ = 1
1 − �̄�

CΦC,

C = I − 1
𝑛

11⊺ ∶ Centering matrix.

Association test is a regression with
correlated residuals:

y = 1𝛼 + x𝑖𝛽𝑖 + s + 𝜖,
s ∼ Normal (0, 2𝜎2

𝐺Φ) ,
𝜖 ∼ Normal (0, 𝜎2

𝐸I) .

Kinship bias compensated by intercept!

s′ = Cs ∼ Normal (0, 2𝜎2′
𝐺 Φ′) ,

𝜎2′
𝐺 = (1 − �̄�)𝜎2

𝐺,
s′ = s − 1 ̄𝑠,
𝛼′ = 𝛼 + ̄𝑠
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Kinship bias affects heritability estimation
Model:

y = 1𝛼 + s + 𝜖,
s + 𝜖 ∼ Normal (0, 2𝜎2

𝐺Φ + 𝜎2
𝐸I) .

Heritability definition:

ℎ2 =
𝜎2

𝐺
𝜎2

𝐺 + 𝜎2
𝐸

.

Variance is estimated with bias:

𝜎2′
𝐺 = (1 − �̄�)𝜎2

𝐺.

There are more sources of bias!!!
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LIGERA (LIght GEnetic Robust Association): a reversed LMM

Linear mixed-effects model (LMM):

y = X𝛽 + s + 𝜖, s + 𝜖 ∼ Normal (0, 2𝜎2
𝐺Φ + 𝜎2

𝐸𝐼) .

LIGERA:
x𝑖 = Y𝛽 + s, s ∼ Normal (0, 𝜎2Φ) ,

where here X, Y include covariates and intercept.

▶ LIGERA is faster: no need to fit 𝜎2
𝐺, 𝜎2

𝐸, a slow LMM step!
▶ But Standard Estimator is singular, LIGERA requires non-singular Φ
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Recently-admixed populations
African-Americans

Baharian et al. (2016)

Hispanics

Moreno-Estrada et al. (2013)
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Population kinship driven by admixture in Hispanics
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Kinship under the admixture model
Θ Ψ
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Θ = QΨQ⊺

(Only for unbiased kinship)

Can we reverse this formula?

Constrained optimization, regularized objective:

𝐹 = ∣∣Θ̂ − QΨQ⊺∣∣
2

+ 𝛾 tr(Ψ).

23 / 26



Kinship under the admixture model
Θ Ψ

0
0.

2
0.

4
0.

6

K
in

sh
ip

In
di

vi
du

al
s

Q

0.
0

0.
5

1.
0

A
nc

es
tr

y

Θ = QΨQ⊺

(Only for unbiased kinship)

Can we reverse this formula?

Constrained optimization, regularized objective:

𝐹 = ∣∣Θ̂ − QΨQ⊺∣∣
2

+ 𝛾 tr(Ψ).
23 / 26



AdmixCor: accuracy
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Unbiased kinship estimates: new models, opportunities

New ”popkin”
kinship estimator

Biased ”standard”
kinship estimator
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