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Fst and “island” models

Allele frequency
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Allele frequencies in human populations
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Admixture in human populations
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Our admixture simulation

A) Spread of intermediate populations
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C) Island model approximation

D) Weights from island model
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Our contribution

A) WC islands B) Hudson islands C) BN-PSD admixture

0.05

Individuals
0.03
Coancestry

Previous Fst definitions/estimators assume subdivided, independent populations.

0 0.01

We generalize Fst for arbitrary populations, in terms of individuals, using
inbreeding and kinship coefficients.

We characterize the bias of popular estimators, through theory and simulations.



An unstructured population

Pi= 0.25
A population is “unstructured” if its
individuals mate randomly. S
In a large population, genotypes g < |
S o
. . ot
x;j ~ Binomial(2, p;), g
a N_|
at SNP / with reference allele frequency ©
pi, for any individual ;.
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This is “Hardy-Weinberg Equilibrium”. 0 1 2
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Inbreeding rises in structured and small populations

p; =0.25, fj =0.5
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“Inbreeding coefficient” f;: probability E <_|
that the two alleles of individual j at a s ©
random SNP are “identical by descent” £
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(IBD) given an ancestral population. S
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Kinship coefficients quantify relatedness

Kinship given unrelated founders

J, k relation Ok

self 1/2

“Kinship coefficient” ¢j.: probability child 1/4
that one allele of individual j and one of sibling 1/4

individual k, at a random SNP, are IBD,

half sibling 1/8
given an ancestral population.

uncle or nephew 1/8

first cousins 1/16

second cousins  1/64
unrelated 0




What is Fs1? Wright (1951)

Given a “subdivided” population... We define these coefficients:

T: total population Fir: total inbreeding (of / relative to T)
S: a subpopulation of T Fis: local inbreeding (of / relative to S)
I: an individual in S Fst: inbreeding due to the population

structure (of S relative to T).

These coefficients are related by:
(1= Fir) = (1= Fs)(1 — Fsr)

Fst is the inbreeding coefficient that individuals in S would have, relative to T, if
they mated randomly.



Comparison of models assumed for Fgt estimation

A) WC islands B) Hudson islands C) BN-PSD admixture
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Kinship model for genotypes

Let T be the ancestral population. In the absence of selective pressures, allele
frequencies drift randomly from the ancestral frequency p.”, with covariances
modulated by the kinship coefficients:

Elx;| T] = 2p/
Var(x;| T) = 2p/ (1 — o)1+ £7),
Cov(xj, x| T) = 4p (1 — p/ )ofi.

Note that ¢ = 3(14£7).

(Wright 1921, Malécot 1948, Wright 1951, Jacquard 1970).



Individual-level analogs of F1, Fis, Fst

“Total" coef., analogous to Ft:
f." and @} are relative to T.

“Local” coef., analogous to Fis:
L. .
fj’ is relative to L;,

Li - :
@i is relative to Ly.

“Structural” coef., analogous to Fst:
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Fst for arbitrary population structures

We propose
n
.
Fst = Z wify;
j=1
where Z}’Zl w; = 1 are non-negative weights.

Backward compatible with island models (needs specific weights), and coherent
with Wright's original definition.

Local inbreeding is removed on an individual basis!



“Coancestry” model and individual allele frequencies

This restricted model assumes the existence of “individual-specific allele
frequencies” 7;;, modulated by “coancestry” coefficients QJI:

xij|m;j ~ Binomial(2, 7;),
Elmy| T] = p/
Cov(my, ma| T) = p/ (1 = pI'T)Qj-,l;'

This model excludes local relationships. Given these assumptions, coancestry and
kinship coefficients are the same:

97': 90]1; if J#ka
20 —1=fT if j=k



Bias estimating marginal allele variance

The term p;(1 — p;) recurs in our models. The simplest estimator is biased:

n
PiZE wiTy =
j=1

E[pi(1 — A1)l = pi(L — pi)(1 — 0),

n n n . g . .
where 6 =37, >/, wiwi0j is the mean coancestry across individuals in our

data. Since 0 < 0 < 1, the bias is always downward.

The same things happens if we use genotypes (0 replaced by ¢).



Bias estimating kinship/coancestry coefficients
The popular kinship estimator from genotypes, and its limit as m — oo, are

B — > (Xijm— QAﬁi) (XikA_ 2p;) a5, Pk = P —_@k + ¢
4% L pi(1—pi) 1-9¢

)

where @; = >, wipx and @ = Y7, >0 wiwipjk. Bias in admixture sim.:

Individual Allele Frequencies Genotypes
A) True coancestry matrix B) Limit MM Estimator C) Actual MM Estimate D) Limit MM Estimator E) Actual MM Estimate
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Bias estimating the generalized Fgt
A “simple” Fst estimator, derived from éj is also biased as m — oo:

WC and Hudson Fst estimators

Fst estimate
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are similarly biased in our admixture simulation:

B) Hudson islands C) BN-PSD admix.

__I____I__

- = True FST

0.0|202
0 (.}20

0.0200

I

|

|

|

|

|
——

|

0.010
I
'

wcC Hudson

0.0|198
0 0|00

wcC Hudson . wcC Hudson
Fst estimator



In this work, we...

...generalized Fst using IBD probabilities for individuals.

...connected FsT, kinship coefficients, and admixture models.

...proved almost sure convergence of simple estimators to biased quantities.
...used an admixture simulation to illustrate biases.

Our models could lead to more robust estimators.
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